

Answer ALL Questions. All questions carry equal marks.

1. a) (i) Prove that if P^{*} is a refinement of P , then $L(P, f, \alpha) \leq L\left(P^{*}, f, \alpha\right)$ and $U(P, f, \alpha) \geq U\left(P^{*}, f, \alpha\right)$.

OR
(ii) If $f \in \mathfrak{R}(\alpha)$ and $g \in \mathfrak{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$, then prove that $f g \in \mathfrak{R}(\alpha)$.
b) (i) Assume α increases monotonically and $\alpha^{\prime} \in \mathfrak{R}$ on $[\mathrm{a}, \mathrm{b}]$. Let f be a bounded real function on [a, b]. Then prove that $f \in \Re(\alpha)$ if and only if $f \alpha^{\prime} \in \Re$ and in that case $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
(ii) State and prove the fundamental theorem of calculus.

OR

(iii) Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b] and α is continuous at every point at which f is discontinuous. Then prove that $f \in \Re(\alpha)$.
(iv) Let $f \in \Re(\alpha)$ on [a, b], $m \leq f \leq M, \varphi$ be continuous on [m, M] and $h(x)=\varphi(f(x))$ on $[\mathrm{a}, \mathrm{b}]$. Then prove that $h \in \Re(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$.
2. (a)(i) Illustrate with an example that the limit of the integral need not be equal to the integral of the limit.
(ii) Prove that the sequence of functions $\left\{f_{n}\right\}$ defined on E , converges uniformly on E if and only if for every $\varepsilon>0$ there exists an integer N such that $m \geq N, n \geq N, x \varepsilon E$ implies $\left|f_{n}(x)-f(x)\right| \leq \varepsilon$.
(5)
(b) (i) Suppose $f_{n} \rightarrow f$ uniformly on a set E in a metric space. Let x be a limit point of E , and suppose that $\lim _{t \rightarrow x} f_{n}(t)=A_{n} n=1,2,3, \ldots$, then prove that $\left\{A_{n}\right\}$ converges and $\lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} A_{n}$.
(ii) Let α be monotonically increasing on $[a, b], f_{n} \varepsilon \sqcup(\alpha)$ on $[a, b]$, for $n=1,2,3, \ldots$ and suppose $f_{n} \rightarrow f$ on $\quad[a, b]$. Then prove that $\left.\quad f \varepsilon\right\lrcorner(\alpha)$ on $\quad[a, b]$ and $\quad \int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty}^{b} \int_{a}^{b} f_{n} d \alpha$. (8+7)
(iii) State and prove Stone- Weierstrass theorem.
3. a) (i) Let $S=\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots\right\}$, where $\varphi_{0}(x)=\frac{1}{\sqrt{2 \pi}}, \varphi_{2 n-1}(x)=\frac{\cos n x}{\sqrt{\pi}}$ and $\varphi_{2 n}(x)=\frac{\sin n x}{\sqrt{\pi}}$, for $\mathrm{n}=1$, $2 \ldots$. Prove that S is orthnormal on any interval of length 2π. (5)

OR
(ii) Let $=\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots\right\}$ be orthnormal on I and assume that $f \in L^{2}(I)$. Define two sequences of functions $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ on I as follows: $s_{n}(x)=\sum_{k=0}^{\infty} c_{k} \varphi_{k}(x), t_{n}(x)=\sum_{k=0}^{\infty} b_{k} \varphi_{k}(x)$
where $c_{k}=\left(f, \varphi_{k}(x)\right.$ for $\mathrm{k}=0,1,2 \ldots$ and $\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \ldots$ are arbitrary complex numbers. Then for each n , prove that $\left\|f-s_{n}\right\| \leq \mid f-t_{n} \|$.
(5)
b) (i) State and prove Riesz-Fischer theorem.
(ii) State and prove Riemann-Lebesgue lemma.

OR
(iii) If g is of bounded variation on $[0, \delta]$, then prove that $\lim _{\alpha \rightarrow \infty} \frac{2}{\pi} \int_{0}^{\delta} g(t) \frac{\sin \alpha t}{t} d t=g(0+)$.
(iv) Assume that $f \in L[0,2 \pi]$ and suppose that f is periodic with period 2π. Let $\left\{s_{n}\right\}$ denote the sequence of partial sums of the Fourier series generated by $\mathrm{f}, s_{n}(x)=\frac{a_{0}}{2}+\sum_{k=0}^{\infty}\left(a_{k} \cos k x+\right.$ (bksinkx), $\mathrm{n}=1,2, \ldots$. Then prove that
$s_{n}(x)=\frac{2}{\pi} \int_{0}^{\pi} \frac{f(x+t)+f(x-t)}{2} D_{n}(t) d t$ where D_{n} is called Dirichlet's Kernel. (8+7)
4.(a) (i) Let r be a positive integer. If a Vector space X is spanned by a set of r vectors, then prove that $\operatorname{dim} X \leq r$. (5)

OR
(ii) Prove that a linear operator A on a finite dimensional vector space X is one-to-one if and only if the range of A is all of X .
(b) (i) Suppose E is an open set in R^{n}, f maps E into R^{m}, f is differentiable at $x_{0} \varepsilon E, g$ maps an open set containing $f(E)$ into R^{k}, and g is differentiable at $f\left(x_{0}\right)$. Then prove that the mapping F of E into R^{k} defined by $F(x)=g(f(x))$ is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)$. (15) OR
(ii) State and prove Inverse function theorem.
5. (a)(i) Graph the ellipse given by $\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$. Using the graphical approach, determine parts of the graph that have inverses and algebraic approach, find invertible formulas and cases converting x to y .

OR

(ii) Define heat flow and the heat equation.
(b) (i) Derive D' Alembert's approach toward characterizing solutions of the one dimensional wave equation.
(ii) Derive the solution to the heat equation.

> OR
(iii) Use matrix notation to solve $\frac{\partial f}{\partial x} \cdot 1+\frac{\partial f}{\partial y} \cdot 0+\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial x} \cdot \frac{\partial v}{\partial x}=0$

$$
\begin{align*}
& \frac{\partial f}{\partial y} \cdot 0+\frac{\partial \partial}{\partial y} \cdot 1+\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}=0 \\
& \frac{\partial g}{\partial x} \cdot 1+\frac{\partial g}{\partial g} \cdot 0+\frac{\partial g}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial g}{\partial v} \cdot \frac{\partial v}{\partial x}=0 \\
& \frac{\partial g}{\partial y} \cdot 0+\frac{\partial g}{\partial y} \cdot 1+\frac{\partial g}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial g}{\partial v} \cdot \frac{\partial v}{\partial y}=0 \tag{9}
\end{align*}
$$

What is the criterion needed for the existence of the inverse matrix?
(iv) Convert the river coordinates (u, v) into geographic (x, y) coordinates.

